Organische Synthesen mit Übergangsmetall-Komplexen, 54¹⁾

Cyclopentadiene aus 1-Metalla-1,3-dienen und Alkinen durch Cyclisierung intermediärer 1-Metalla-1,3,5-triene (Metall = Wolfram)

Rudolf Aumann **, Heinrich Heinen*, Mechthild Dartmann *)b und Bernt Krebs *)b

Organisch-Chemisches Institut der Universität Münster^a, Orléans-Ring 23, W-4400 Münster

Anorganisch-Chemisches Institut der Universität Münster^b, Corrensstraße 36, W-4400 Münster

Eingegangen am 15. März 1991

Key Words: Cyclopentadienes, synthesis of / [3 + 2] Cycloadditions of 1-metalla-1,3-dienes and alkynes / 1-Metalla-1,3,5trienes of tungsten, cyclization to cyclopentadiene complexes / η¹-Cyclopentadiene tungsten complexes / Aminocarbene complexes of chromium and tungsten

Organic Syntheses via Transition Metal Complexes, 54^{1} . – Cyclopentadienes from 1-Metalla-1,3-dienes and Alkynes by Cyclization of Intermediate 1-Metalla-1,3,5-trienes (Metal = Tungsten)

We report on first examples of the formation of cyclopentadienes from a 1-metalla-1,3-diene $L_nM = C - C = C$ [$L_nM = W(CO)_5$] and an alkyne in [3 + 2] cycloaddition multistep reactions. In a first step the alkyne $Et_2N - C \equiv C - Me$ (2) adds to the 1-metalla-1,3-diene (CO)₅W = C(OEt) - CH = CHPh (1b) to give 1-metalla-1,3,5-trienes (CO)₅ $W = C(NEt_2) - CMe = C(OEt) - CH = CHPh$ (3b) and (CO)₅ $W = C(OEt) - CH = C(NEt_2) - CMe =$

Elektrocyclische Reaktionen von Sechs-Elektronen-Systemen, wie z. B. Umwandlungen von 1,3,5-Hexatrienen in 1,3-Cyclohexadiene, sind schon lange bekannt^{2a}. Gleiches gilt auch für die Elektrocyclisierung von Pentadienyl-Anionen² zu Cyclopentenyl-Anionen^{2b} (Schema 1). Als neuartigen Typ einer Sechs-Elektronen-Reaktion beschreiben wir hier Umwandlungen von 1-Metalla-1,3,5-trienen $L_nM = C - C = C - C = C$ in Cyclopentadien-Komplexe (Schema 1).

Schema 1. Pentadienyl-Anion/Cyclopentenyl-Anion-Umwandlung und eine neuartige 1-Metalla-1,3,5-trien/Cyclopentadien-Umwandlung

Im Rahmen explorativer Studien von Templatreaktionen mit Fischer-Carbenkomplexen^{1,3)} haben wir 1-Metalla-1,3,5triene^{3,4)} L_nM=C-C=C-C=C erstmals durch Addition CHPh (4b). In a second step 3b cyclizes to the cyclopentadiene complex 5, which has an η^1 ylide-type structure as established by an X-ray analysis. Hydrolysis of 5 leads to the formation of a 3-aminocyclopentenone 7. The 1-metalla-1,3,5-triene 4b yields a cyclopentadiene complex 8. In contrast to 5 the carbon skeleton of 8 has a connectivity different from that of the C_3 unit of the 1-metalla-1,3-diene 1.

eines Alkins an 1-Metalla-1,3-diene $L_nM = C - C = C$ hergestellt (Schema 2)^{4c)}.

Schema 2. 1-Metalla-1,3,5-triene 3 und 4 durch Insertion des Alkins 2 in die M=C- bzw. C=C-Bindung eines 1-Metalla-1,3dicns 1 $[L_nM = Cr(CO)_5, W(CO)_5]$ (Lit. ^{4c})

3b:4b = ca.2:1 (Ausb.60%)

Die Addition von Alkinen an 1-Metalla-1,3-diene $L_n M = C - C = C$ verläuft mehrstufig. Unter sorgfältig kontrollierten Reaktionsbedingungen^{4c)} lassen sich 1-Metalla-1,3,5-triene $L_n M = C - C = C - C = C$ als Zwischenprodukte

Chem. Ber. 124 (1991) 2343-2347 © VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1991 0009-2940/91/1010-2343 \$ 3.50+.25/0

^{*)} Kristallstruktur-Analyse.

isolieren. Diese wurden von uns sowohl spektroskopisch als auch anhand einer Kristallstruktur-Analyse^{4e)} charakterisiert. 1-Metalla-1,3,5-triene sind wegen ihrer Polyfunktionalität als Synthese-Bausteine von Interesse. Als erstes Anwendungsbeispiel beschreiben wir ihre (in Lösung bei 20 °C spontan ablaufende) Isomerisierung zu Cyclopentadien-Komplexen^{4e)}.

Cyclisierung des 1-Metalla-1,3,5-triens 3b

Schema 3 zeigt die Cyclisierung des 1-Metalla-1,3,5-triens **3b** in Lösung bei 20°C ($t_{1/2} = 14$ h) zum Cyclopentadien-Komplex 5. Die Umwandlung läßt sich anhand von ¹H-NMR-Spektren in C₆D₆ zeitlich verfolgen. 5 wurde chromatographisch isoliert und anhand einer Kristallstruktur-Analyse charakterisiert (s. Exp. Teil). Die Verbindung ist Ylid-artig polarisiert und demnach als η^1 -Cyclopentadien-Komplex zu betrachten (Abb. 1). Die (exocyclische) N(1)-C(1)-Bindung weist eindeutig Doppelbindungscharakter auf (1.33 Å, Legende zu Abb. 1). Die Abstände C(2) - C(3), C(3)-C(4) und C(4)-C(5) sind gleich (jeweils 1.41 Å) und gegenüber einer C,C-Einfachbindung verkürzt, wohingegen die Abstände C(1) – C(5) (1.52 Å) und C(4) – C(5) (1.54 Å) den Erwartungswerten einer C,C-Einfachbindung entsprechen. Die auffallend lange Bindung W(1) - C(4) (2.40 Å) spiegelt den Ylid-Charakter dieser Bindung wider. Die trans-Anordnung beider Ringprotonen wird sowohl kristallographisch als auch durch die kleine ³J-Kopplung im ¹H-NMR-Spektrum bestätigt.

Abb. 1. Molekülstruktur von 5; einige Abstände [Å] und Bindungswinkel [°]: W(1) – C(4) 2.40(1), W(1) – C(21) 2.00(1), C(1) – C(2) 1.41(2), C(2) – C(3) 1.41(2), C(3) – C(4) 1.41(2), C(4) – (5) 1.54(2), C(5) – C(1) 1.52(2), N(1) – C(1) 1.33(2), O(1) – C(3) 1.35(2). – C(4) – W(1) – C(20) 87.5(5), W(1) – C(4) – C(3) 104.6(7), W(1) – C(4) – C(5) 113.1(8)

Zur Deutung der Stereochemie der Umwandlung von 3bin 5 schlagen wir metallacyclische Zwischenstufen A und/ oder B vor (Schema 3). Für die Isomerisierung von A nach B sind im Prinzip zwei stereochemisch unterschiedliche Wege denkbar, die eine *cis*- bzw. *trans*-Anordnung des Metallrests zur Phenylgruppe bewirken. Die beobachtete Torquizität entspricht dem sterisch begünstigten Reaktionsweg, könnte jedoch auch elektronische Ursachen haben. Schema 3. Thermische Isomerisierung des 1-Metalla-1,3,5-triens 3b zum Cyclopentadien-Komplex 5 sowie Vorstellungen zum Reaktionsablauf über Zwischenstufen A und B

Cyclopentene 6 und 7 aus 5

Der Cyclopentadien-Komplex 5 ist in Lösung nicht sehr beständig, da sich ein (mobiles) Wasserstoff-Atom in unmittelbarer Nähe zum Metallrest befindet. 5 wandelt sich bei 20 °C langsam in 6 um. Aus einer C₆D₆-Lösung von 5 (oder 3b) scheidet sich 6 im Verlauf mehrerer Tage (bei Lichtausschluß) als hellgelbes, dünnflüssiges Öl ab. Im ¹H-NMR-Spektrum von 6 (in CD₃COCD₃) erkennt man unschwer das Iminium-Kation am Protonen-Kopplungsmuster. Verglichen mit 5 enthält 6 ein zusätzliches Wasserstoff-Atom, dessen Herkunft zunächst unklar ist. Eventuell vorhandenes Wasser wurde als Protonenquelle ausgeschlossen.

Chem. Ber. 124 (1991) 2343-2347

Wir nehmen daher an, daß 6 durch Dismutation von 5 entsteht. Dabei wird eventuell aus 5 durch oxidative Addition von 5-H eine Zwischenstufe C gebildet und aus dieser ein Wasserstoffatom vom Metall auf ein zweites Molekül 5 übertragen. Der in Benzol lösliche Neutralkörper, dem wir die Zusammensetzung D zuordnen, wurde nicht näher charakterisiert (Schema 4).

In H_2O/H^+ wird 5 rasch zum 3-Aminocyclopentenon 7 abgebaut, das durch ein "Push-Pull-System" stabilisiert ist.

Cyclisierung des 1-Metalla-1,3,5-triens 4b

Weiteren Einblick in das Reaktionsgeschehen liefert die Analyse der Cyclisierung von 4b (Schema 5). Im Prinzip verläuft diese analog zur Cyclisierung von 3b. Auch läßt sich die Umwandlung von 4b zum Cyclopentadien-Komplex 8 anhand von ¹H-NMR-Spektren in C₆D₆ gut verfolgen. Auf Grund der spektroskopischen Befunde ordnen wir 8 eine

Schema 5. Cyclisierung des 1-Metalla-1,3,5-triens 4b zum Cyclopentadien-Komplex 8, Dismutation von 8 unter Bildung eines Imonium-Ions 9, sowie Überlegungen zum Reaktionsablauf

Chem. Ber. 124 (1991) 2343-2347

Ylid-Struktur (analog zum η^1 -Cyclopentadien-Komplex 5) zu. Aus der Konfiguration von 8 folgern wir, daß diese Verbindung nicht das Primärprodukt der Cyclisierung von 4b darstellt, sondern aus diesem in einer thermodynamisch kontrollierten Reaktionskaskade entstanden ist. Dazu kann man sich gut vorstellen, daß eine als Primärprodukt erwartete Verbindung G über einen η^1 -Cyclopentadienyl-Komplex I in 8 umlagert. Die gleiche Zwischenstufe I könnte auch an der Dismutation von 8 zu 9 (und K) beteiligt sein. 9 scheidet sich (wie 6, Schema 4) aus einer C₆D₆-Lösung von 8 (bzw. von 4b) als hellgelbes Öl ab. 9 wurde spektroskopisch charakterisiert, nicht jedoch der in Lösung bleibende Neutralkörper, dem eventuell die Zusammensetzung K zukommt.

Ausblick

[3 + 2]-Cycloadditionen zum Aufbau carbocyclischer Fünfringe⁵⁾ bilden gewissermaßen das Gegenstück zur Diels-Alder-Addition, der wichtigsten Methode zum Aufbau carbocyclischer Sechsringe. Verfahren zum Aufbau carbocyclischer Fünfringe aus 1-Metalla-1,3-dienen waren bereits vor Beginn unserer Untersuchungen bekannt. Dabei wurden die Komplexe als C₃-Bausteine an Isocyanide^{3d,4a,b}, Ketoalkine⁶⁾ oder Alkene⁷⁾ addiert.

Das hier beschriebene Verfahren zur Gewinnung von Cyclopentadienen aus 1-Metalla-1,3-dienen und Alkinen über 1-Metalla-1,3,5-triene ist methodisch neu⁸⁾. Es wurde erstaunlicherweise bisher nicht beschrieben, obwohl Reaktionen von Fischer-Carbenkomplexen mit Alkinen schon seit 1975 in vielen Varianten für Synthesen eingesetzt wurden³⁾. Aminofunktionen an C-1 oder C-3 scheinen die Reaktion zu begünstigen. Einen Beitrag zum Verständnis der Reaktion liefert der Befund, daß wir sowohl offenkettige (1-Metalla-1,3,5-triene $L_n M = C - C = C - C = C$) als auch cyclische Metallkomplexe $[cyclo-(C=C-C=C-C)L_nM]$ als Zwischenprodukte isolieren und somit Insertions- und Cyclisierungsschritte der Metall-induzierten [3 + 2]-Cycloadditionen getrennt studieren konnten. Die aus 1-Metalla-1,3-dienen und Alkinen erhältlichen carbocyclischen Fünfringe sind wegen ihrer 1,3-Hetero-Funktionalität sowie der gut zugänglichen Ausgangsmaterialien für Synthesen von Interesse.

Diese Arbeit wurde von der Deutschen Forschungsgemeinschaft und vom Fonds der Chemischen Industrie gefördert. Erste Experimente zu vorliegender Untersuchung wurden von Dr. P. Hinterding durchgeführt.

Experimenteller Teil

Umsetzungen und Aufarbeitungen erfolgten unter Inertgas. – Alle Lösungsmittel waren trocken und frisch destilliert. – ¹H- und ¹³C-NMR: Bruker WM 300 (Zuordnung durch DR-Experimente bzw. Breitband-, DEPT- und "Gated-decoupling"-Messungen). – IR: Digilab FTS 45. – MS: Finnigan MAT 312. – Elementaranalysen: Perkin-Elmer 240 Elemental Analyser. – Säulenchromatographie: Merck-Kieselgel 100; Dünnschichtchromatographie: Merck DC-Alufolien Kieselgel 60 F 254. – Petroletherfraktion: 40-60°C. R_{Γ} Werte beziehen sich jeweils auf DC-Tests.

Pentacarbonyl[4-(diethyliminio)-2-ethoxy-3-methyl-5-phenyl-2cyclopenten]wolframat (5) durch Isomerisierung von 3b: 298 mg (0.50 mmol) 3b^{4c)} in 3 ml Petrolether werden in einem luftdicht verschraubbaren 5-ml-Glasgefäß unter Lichtausschluß bei 20°C aufbewahrt. Die zunächst blaßgelbe Lösung wird dabei intensiv gelb. Der Fortgang der Reaktion läßt sich anhand von DC-Tests sowie von ¹H-NMR-Spektren in C₆D₆ verfolgen. Bei 20 °C in C₆D₆ beträgt $t_{1/2}$ = ca. 14 h. Da sich 5 in Lösung weiter umwandelt (wobei sich 6 als hellgelbes Öl abscheidet, s.u.), wird zur Erzielung optimaler Ausbeuten an 5 nach 2 d bei 20°C durch zügige Chromatographie an Kieselgel aufgearbeitet (Säule 20 × 2 cm). Mit Petrolether/Dichlormethan (3:1) eluiert man eine gelbe Zone mit 5 ($R_f = 0.6$ in Petrolether/Dichlormethan 2:1), gelbe Kristalle, 200 mg (66%), Schmp. 62° C aus Petrolether bei -78° C, dann eine gelbe Zone mit nicht umgesetztem **3b** (30 mg, 10%). – 5: ¹H-NMR (C₆D₆): δ = 7.10-7.05 und 7.05-6.95 (4:1 H, je m, C₆H₅), 4.81 (1 H, s, 4-H, Ph), 4.04 und 3.09 (je 1 H, dq, je ${}^{2}J = 10$ Hz, diastereotope OCH₂), 2.83 und 2.58 (je 2H, je m, je diastereotope NCH₂), 2.59 (1H, s, 1-H, CH-W), 1.93 (3H, s, 3-CH₃), 0.94 (3H, t, CH₃, OEt), 0.59 (6H, t, 2 CH₃, NEt₂). - ¹³C-NMR (C₆D₆): δ = 204.2 und 201.7 [1:4, transund cis-CO, W(CO)5], 169.9 (C-4), 142.7 (C-2), 128.3 (i-C, C6H5); 129.8, 127.4, 126.0 (2:1:2 C, C-2 bis -6, C₆H₅); 100.2 (C-3), 65.7 (OCH2), 64.5 (C-5), 45.0 (2 NCH2), 40.1 (C-1), 14.2 (3-CH3), 13.6 (2 CH₃, NEt₂), 9.5 (CH₃, OEt). – IR (Hexan), cm⁻¹ (%): $\tilde{v} = 2058.0$ (15), 1982.8 (15), 1917.2 (100), 1905.7 (50) $[v(C \equiv O)]$. - MS (70 eV), bezogen auf ¹⁸⁴W: m/z (%) = 595 (8) [M⁺], 567 (4), 539 (3), 511 (4), 271 (100) [Ligand⁺], 242 (81) [271 - Et], 214 (98) [242 - $C_{2}H_{4}$]. $C_{23}H_{25}NO_{6}W$ (595.3) Ber. C 46.41 H 4.23 N 2.54 Gef. C 46.20 H 4.16 N 2.35

Röntgenstrukturanalyse von 5: Einzelheiten sind in Tab. 1 zusammengcfaßt. Die Intensitäten wurden mit einem Siemens-R3-Vierkreisdiffraktometer gemessen. Tab. 2 enthält die Atomparameter. Alle Rechnungen wurden mit dem Programmsystem SHELXTLplus durchgeführt. Weitere Einzelheiten zu den Kristallstrukturbestimmungen können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-55268, der Autorennamen und des Zeitschriftenzitats angefordert werden.

Tab. 1. Kristallographische Daten und Einzelheiten zur Kristallstrukturanalyse von 5

Formel C23H25NO6W, Molmasse 595.3, Kristalldimensionen 0.13 x
0.15 x 0.2 mm, Kristallfarbe gelb, a = 8.150(1), b =
15.130(2), c = 9.817(1) Å, $\beta = 100.04(1)^{\circ}$, V = 1191.9 Å ³ , Z =
2, $d_{rontg} \approx 1.66 \text{ g} \cdot \text{cm}^{-3}$, $\mu = 4.98 \text{ mm}^{-1}$, F(000) = 584,
Kristallsystem monoklin, Raumgruppe P2 ₁ , SIEMENS R3-
Diffraktometer, Strahlung MoK, (0.71073 Å), Messtemperatur 160
K, 20/0-scan/4 ⁰ < 20 < 54 ⁰ , Zahl der unabhängigen gemessenen
Reflexe 2489 (h, k, (1) , Zahl der Reflexe mit I > 1.96 $\sigma(I)$
2418, 259 verfeinerte Parameter, Lösung der Struktur mit
Schweratom-Methode, Kleinste-Quadrate-Verfeinerung (volle
Matrix) (SHELXTL-plus), Positionen der H-Atome berechnet, R1 =
0.0455, $R_w = 0.0573$ (w = $1/\sigma^2 (F_0) + 0.0001 (F_0)^2$), Restelek-
tronendichte max. 3 e Å ⁻³ (ca. 0.8 Å von W-Position entfernt)

Carbonyl[3-(diethylimino)-1-ethoxy-2-methyl-4-phenyl-1-cyclopenten]wolframat 6 durch Isomerisierung von 5 bzw. von 3b: Man läßt eine Lösung von 178 mg (0.30 mmol) 5 in 1 ml C₆D₆ 2 d bei 20°C unter Lichtausschluß stehen. Dabei scheidet sich 6 als gelbes Öl ab (ca. 110 mg), das bei -20°C in [D₆]Aceton mindestens 20 d beständig ist, in Gegenwart von Wasser jedoch zu 7 hydrolysiert. 6 läßt sich auch direkt aus 3b gewinnen, ohne Isolierung von 5. – ¹H-NMR ([D₆]Aceton): $\delta = 7.45 - 7.35$ (5H, m, C₆H₅), 4.90 (1H, d verbreitert, ³J = 7 Hz, 4-H), 4.52 (2H, q, OCH₂), 4.00 und 3.60 (je 2H, je q, je dynamisch leicht verbreitert, 2 NCH₂), 3.75 und 2.85

Tab. 2. Atomkoordinaten der Atome von 5 mit Standardabweichungen (in Klammern) und äquivalenten U-Werten [Å²]

Atom	x	У	2	^U eq
W(1)	0.17335(4)	0.25	0.25110(4)	0.0146(2)
0(1)	0.0000(10)	0.0304(7)	0.1508(10)	0.022(3)
0(2)	0.161(2)	0.0929(9)	0.459(1)	0.046(5)
0(3)	-0.187(1)	0.3194(8)	0.286(1)	0.045(5)
0(4)	0.355(1)	0.3601(8)	0.507(1)	0.037(4)
0(5)	0.207(1)	0.4223(8)	0.070(1)	0.037(4)
0(6)	0.516(1)	0.1778(10)	0.188(1)	0.043(5)
N(1)	0.357(1)	0.1259(8)	-0.156(1)	0.016(3)
C(1)	0.236(1)	0.1198(9)	-0.081(1)	0.016(4)
C(2)	0.200(2)	0.0518(10)	0.007(1)	0.016(4)
C(3)	0.071(1)	0.0861(9)	0.071(1)	0.016(4)
C(4)	0.033(1)	0.1762(9)	0.047(1)	0.015(4)
C(5)	0.112(1)	0.1949(9)	-0.082(1)	0.018(4)
C(6)	0.376(2)	0.2031(9)	-0.244(1)	0.016(4)
C(7)	0.493(2)	0.272(1)	-0.161(2)	0.031(7)
C(8)	0,481(2)	0.056(1)	-0.163(1)	0.024(5)
C(9)	0.435(2)	-0.004(1)	-0.285(2)	0.038(6)
C(10)	-0.155(1)	0.0582(10)	0.190(1)	0.021(4)
C(11)	-0.213(2)	-0.016(1)	0.275(2)	0.034(5)
C(12)	0.273(2)	-0.038(1)	0.038(2)	0.033(5)
C(13)	-0.021(1)	0.1957(9)	-0.215(1)	0.014(2)
C(14)	-0.086(2)	0.118(1)	-0.276(1)	0.032(7)
C(15)	-0.213(2)	0.124(1)	-0.392(2)	0.033(3)
C(16)	-0.270(2)	0.202(2)	-0.444(2)	0.055(9)
C(17)	-0.203(2)	0.280(2)	-0.386(2)	0.06(1)
C(18)	-0.079(2)	0.276(1)	-0.270(2)	0.038(8)
C(19)	0.163(2)	0.146(1)	0.384(2)	0.029(5)
C(20)	-0.054(2)	0.296(1)	0.278(2)	0.027(3)
C(21)	0.288(2)	0.320(1)	0.413(1)	0.025(5)
C(22)	0.191(2)	0.362(1)	0.132(1)	0.026(5)
C(23)	0.392(2)	0.2028(10)	0.211(1)	0.022(3)

(je 1 H, AB-System, ${}^{2}J = -19$ Hz, A-Teil in Dublett aufgespalten mit ${}^{3}J = 7$, 5-H,H), 2.25 (3 H, s, CH₃), 1.43 und 1.39 (je 3 H, t, je CH₃, Et). - IR (Film), cm⁻¹ (%): $\tilde{v} = 1963.5$ (30), 1903.7 (100), 1847.8 (60) [v(C=O)] des Gegenions; 1554.6 (50) [v(C=N)].

3-(Diethylamino)-2-methyl-4-phenyl-2-cyclopenten-1-on (7) durch Hydrolyse von 5: 595 mg (1.00 mmol) 3b in 1 ml trockenem Toluol werden in einem luftdicht verschraubbaren 5-ml-Glasgefäß erwärmt (45°C, 5 h), wobei die Isomerisierung von 3b zu 5 eintritt. Man fügt 2 ml Ether und 1 ml 2 N HCl zu und mischt sorgfältig (am besten 5 min in einem Ultraschall-Bad). Anhand von DC-Tests wird gezeigt, daß die organische Phase weder 3b noch 5 enthält. Man dekantiert, extrahiert die wäßrige Phase dreimal mit je 0.5 ml Ether und verwirft die organischen Extrakte. Die wäßrige Phase wird vorsichtig und portionsweise mit K2CO3 bis zur alkalischen Reaktion versetzt. Dabei tritt eine Farbvertiefung ein. 7 scheidet sich als farbloses Öl ab, das mit 3 ml Dichlormethan aufgenommen und an Kieselgel chromatographiert wird (Säule 20×2 cm). Mit Ether/ Dichlormethan (1:1) erhält man 7 ($R_f = 0.2$), 200 mg (82%), farbloses Öl. – ¹H-NMR ([D₆]Aceton): $\delta = 7.30$ und 7.15 (2:3 H, ,,t" und m, C₆H₅), 4.15 (1H, dd, ${}^{3}J = 8.0$ und 1.5 Hz, 4-H), 3.50 und 3.30 (2:2H, je m, diastereotope NCH₂), 2.28 und 1.89 (je 1H, je dd, AB-System ${}^{2}J = -17$ Hz, A-Teil aufgespalten mit ${}^{3}J = 8.0$ Hz, B-Teil mit ${}^{3}J = 1.5$, 5-H,H), 1.98 (3 H, s, 2-CH₃), 1.00 (6 H, t, CH₃, NEt₂). - ¹³C-NMR ([D₆]Aceton): δ = 200.9 (C=O), 171.6 (C-3), 145.5 (i-C, C₆H₅); 129.7, 127.3, 127.2 (2:2:1 CH, C₆H₅); 106.3 (C-2), 44.9 (C-5), 44.8 und 44.7 (2 NCH₂), 14.4 (C-4), 10.0 (2-CH₃). - IR (Film), cm⁻¹ (%): $\tilde{v} = 1658$ (60) und 1550 (100) [v(C=C) und v(C=O)]. - MS (70 eV): m/z (%), 243 (100) [M⁺], 228 (80), 214 (82), 186 (10), 171 (8), 139 (16), 128 (18), 105 (20), 96 (30), 91 (60).

Pentacarbonyl[4-(diethyliminio)-2-ethoxy-5-methyl-1-phenyl-2cyclopenten]wolframat (8) durch Isomerisierung von 4b: 30 mg (0.05 mmol) $4b^{4c)}$ in 1 ml C₆D₆ werden unter Lichtausschluß bei 20°C aufbewahrt. Die zunächst blaßgelbe Lösung wird dabei intensiv gelb. Der Fortgang der Reaktion läßt sich anhand von DC-Tests sowie von ¹H-NMR-Spektren in C₆D₆ verfolgen. Bei 20°C in C₆D₆ beträgt $t_{1/2}$ = ca. 12 h. 8 wandelt sich in Lösung bei 20 °C weiter um (wobei sich 9 als hellgelbes Öl abscheidet, s.u.). – ¹H-NMR (C_6D_6) : $\delta = 7.80, 7.36, 7.20 (2:2:1 \text{ H}; ,,d", ,,t", ,,t", C_6H_5), 5.03 (1 \text{ H},)$ s, 3-H), 3.83 (2 H, m, diastereotope 2-OCH₂), 3.36 (1 H, q, ${}^{3}J = 7$ Hz, 5-H), 2.90 und 2.75 (je 2H, je m, 2 diastereotope NCH₂), 1.30 (3H, d, ${}^{3}J = 7$ Hz, 5-CH₃), 1.15 (3H, t, CH₃, OEt), 0.90 (6H, t, 2 CH₃, NEt_2).

Carbonyl / 3-(diethyliminio)-1-ethoxy-4-methyl-5-phenyl-1-cyclopenten/wolframat 9 durch Isomerisierung von 4b: Eine Lösung von 298 mg (0.50 mmol) 4b^{4c)} in 3 ml Petrolether läßt man in einem luftdicht verschraubbaren 5-ml-Glasgefäß unter Lichtausschluß 3 d bei 20°C stehen. Dabei scheidet sich 9 als gelbes Öl ab (ca. 150 mg), das bei -20° C in [D₆]Aceton mindestens 20 d beständig ist, in Gegenwart von Wasser jedoch zu 8 hydrolysiert. - ¹H-NMR $([D_6]$ Aceton): $\delta = 7.40 - 7.30$ und 7.25 (3:2H, m bzw. "d", C₆H₅), 6.60 (1 H, s, 2-H), 4.50 (2 H, q, OCH₂), 3.96 (1 H, s verbreitert, Ph), 3.89 (4H, m, 2 NCH₂), 3.35 (1H, q, ${}^{3}J = 7$ Hz, 4-H), 1.56 (3H, d, ${}^{3}J = 7$ Hz, 4-CH₃); 1.43, 1.41, 1.33 (je 3 H, je t, je CH₃ von NEt₂ und OEt). - ¹³C-NMR ([D₆]Aceton): $\delta = 200.6$, 191.9, 188.7 $[2:2:1 \text{ C}, W_{x}(\text{CO})_{y}^{-}]; 168.2 \text{ (C} = \text{N}^{+}), 138.7 \text{ (C}-1), 128.3 \text{ (i-C, C}_{6}\text{H}_{5});$ 129.8, 128.6, 127.9 (2:1:2, C₆H₅); 99.5 (C-2), 71.5 (OCH₂), 58.4 (C-5), 48.8 und 48.6 (2 NCH₂), 46.1 (C-4); 19.8, 14.0, 13.9, 13.0 (je CH₃; 4-CH₃, NEt₂, OEt). – IR (Film), cm⁻¹ (%): $\tilde{v} = 1965.5$ (50), 1905.7 (100), 1845.9 (60) $[v(C \equiv O)]$ des Gegenions; 1564.3 (80) [v(C = N)].

CAS-Registry-Nummern

3b: 132205-37-9 / 4b: 132205-38-0 / 5: 134055-34-8 / 6: 134055-35-9 / 7: 134055-33-7 / 8: 134055-37-1 / 9: 134055-36-0

- ¹⁾ 53. Mitteilung: R. Aumann, B. Trentmann, Chem. Ber. 124 (1991) 2335, voranstehend.
- ^{2) 2a)} Vgl. z. B. N. T. Anh, Die Woodward-Hoffmann-Regeln und ihre Anwendung, Verlag Chemie, Weinheim 1972. ^{2b)} D. H. Hunter, S. K. Sim, R. P. Steiner, Can. J. Chem. 55 (1977) 1229. -2° H. Yasuda, M. Yamauchi, Y. Oltnuma, A. Nakamura, Bull. Chem. Soc. Jpn. 54 (1981) 1481. -2° E. C. Taylor, I. J. Turchi, Chem. Rev. 79 (1979) 181.
- ³⁾ Übersicht: ^{3a)} K. H. Dötz, H. Fischer, P. Hofmann, F. R. Kreissl, U. Schubert, K. Weiss, Transition Metal Carbene Complexes, Verlag Chemie, Weinheim 1984. – ^{3b)} K. H. Dötz, Angew. Chem. 96 (1984) 573; Angew. Chem. Int. Ed. Engl. 23 (1984) 587. – ^{3e)} W. D. Wulff, Adv. Met. Org. Chem. 1 (1989) 209. – ^{3d)} R. Aumann, Angew. Chem. 100 (1988) 1512; Angew. Chem. Int. Ed. Engl. 27 (1988) 1468.
- *Ea. Engl.* 27 (1990) 1400. ^{4) 4a)} R. Aumann, P. Hinterding, C. Krüger, P. Betz, *Chem. Ber.* **123** (1990) 1847. $-^{4b)}$ R. Aumann, P. Hinterding, *Chem. Ber.* **123** (1990) 611. $-^{4c)}$ R. Aumann, H. Heinen, P. Hinterding, N. Sträter, B. Krebs, *Chem. Ber.* **124** (1991) 1229. $-^{4d)}$ R. Aumann, H. Heinen, Chem. Ber. 120 (1987) 537.
- ^{5) 5a)} B. M. Trost, Angew. Chem. **98** (1986) 1; Angew. Chem. Int. Ed. Engl. **25** (1986) 1. ^{5b)} P. Binger, M. Cstinkaya, M. J. Doyle, A. Gerner, U. Schuchardt in Fundamental Research in Homo-geneous Catalysis (M. Tsutsui, R. Ugo, Eds.), Bd. 3, S. 271, Plenum Press, New York 1979; P. Binger, H. M. Büch, Top. Curr. Chem. 135 (1987) 7'
- ⁶⁾ T. A. Brandvold, W. D. Wulff, J. Am. Chem. Soc. 112 (1990)
- ^{1645.}
 ^{7) 7a)} Übersicht: Lit.³⁾. ^{7b)} M. Buchert, H.-U. Reißig, *Tetrahedron Lett.* 29 (1988) 2319. ^{7e)} C. K. Murray, D. C. Yang, W. D. Wulff, J. Am. Chem. Soc. 112 (1990) 5660. ^{7d)} H.-U. Reißig, Wilff, J. Chem. Soc. 122 (1990) 5660. ortrag in Duisburg am 4.3.1991.
- ⁸⁾ Über die Gewinnung von Cyclopentadienen aus β-Dimethylaminovinylcarben-Chromkomplexen und Alkinen berichten neuerdings auch M. Duetsch, R. Lackmann, F. Stein, A. de Meijere, Synlett 1991, 324.

[120/91]